Confined Masonry Buildings: Construction Practice and Seismic Design Concepts

Svetlana Brzev, Ph.D., P.Eng.

British Columbia Institute of Technology, Vancouver, Canada
EARTHQUAKES HAPPEN

...and they can be very destructive
Recent Deadly Earthquakes in the World

➢ 1993 Latur, Maharashtra, India – 8000 deaths
➢ 1999 Ducze, Turkey – 20000 deaths
➢ 2001 Bhuj, Gujarat, India – 14000 deaths
➢ 2003 Boumerdes, Algeria – 3000 deaths
➢ 2004 The Great Sumatra Earthquake and Tsunami in Indonesia, Thailand, Sri Lanka, and India - 270,000 deaths
➢ 2005 Kashmir Earthquake in Pakistan and India - 100000 deaths
CONFINED MASONRY:
an opportunity for improved seismic performance both for unreinforced masonry and reinforced concrete frame construction in low- and medium-rise buildings
Confined Masonry Construction: An Alternative to Reinforced Concrete Frame Construction

An example from Chile (Source: Ofelia Moroni)
Confined Masonry Construction: An Alternative to Unreinforced Masonry Construction

An example from Indonesia (Source: C. Meisl, EERI)
Earthquake Performance

Confined masonry construction has been practiced in countries/regions with very high seismic risk, such as

- Latin America (Mexico, Chile, Peru, Argentina),
- Mediterranean Europe (Italy, Slovenia),
- South Asia (Indonesia),
- Middle East (Iran) and
- the Far East (China).
Earthquake Performance (cont’d)

Confined masonry construction has been exposed to several destructive earthquakes:

- 1985 Lloleo, Chile (magnitude 7.8)
- 1985 Mexico City, Mexico (magnitude 8.0)
- 2001 El Salvador (magnitude 7.7)
- 2003 Tecoman, Mexico (magnitude 7.6)
- 2007 Pisco, Peru (magnitude 8.0)
- 2003 Bam, Iran (magnitude 6.6)
- 2004 The Great Sumatra Earthquake and Tsunami, Indonesia (magnitude 9.0)
- 2007 Pisco, Peru (magnitude 8.0)
- 2010 Maule, Chile (magnitude 8.8)

Confined masonry buildings performed very well in these major earthquakes – some buildings were damaged, but no human losses
Confined Masonry and RC Frame Construction: Performance in Recent Earthquakes

January 2010, Haiti
- M 7.0
- 300,000 deaths

February 2010, Chile
- M 8.8
- 521 deaths
 (10 due to confined masonry construction)
Confined Masonry Construction: a Definition

Confined masonry is a construction system where the walls are built first, and RC columns and beams are cast afterwards.
A difference between the confined masonry and reinforced concrete frames = construction sequence

Confined Masonry
- Walls first
- Concrete later

Reinforced Concrete Frame
- Concrete first
- Walls later

Source: Tom Schacher
Reinforced Concrete Frame Construction
Confined Masonry Construction
Key Components of a Confined Masonry Building

Key structural components of a confined masonry building are:

- **Masonry walls** made either of clay brick or concrete block units
- **Tie-columns** = vertical RC confining elements which resemble columns in reinforced concrete frame construction.
- **Tie-beams** = horizontal RC confining elements which resemble beams in reinforced concrete frame construction.
Components of a Confined Masonry Building
Confined Masonry: Construction Practice
An example from Chile
Confined Masonry Under Construction in Earthquake-Prone Regions of the World

Indonesia

Mexico

Pakistan

Peru
Location of Confining Elements is Very Important!

tie-columns at wall ends and intersections

tie-columns at openings

thickness ≥ 120 mm

tie-column spacing ≤ 4 m

door

window
Location of Confining Elements is Very Important!

- tie-beam in parapets ≥ 500 mm
- tie-columns in parapets
- tie-beam spacing
- slabs
- tie-columns at wall intersections
- confining elements around openings

Constraints:
- \(\frac{H}{t} \leq 25 \)
- \(t \geq 120 \text{ mm} \)

Notes:
- Tie-column spacing:
 - 6.0 m (moderate seismicity)
 - 4.5 m (high seismicity)
Wall Density

- A key parameter influencing the seismic performance of confined masonry buildings - confined masonry buildings with adequate wall density were able to sustain the effects of major earthquakes without collapse.

- Wall density index (d) is a ratio of the total wall area in each orthogonal direction and the floor plan area.

- The required d value depends on seismic hazard, soil type, number of stories, building weight, and masonry shear strength.
How to Determine Wall Density?

\[d = \frac{A_w}{A_p} \]
Recommended Wall Density

The Guide recommends d values from 1 to 9.5%.
How to Distribute Seismic Forces to Walls?

Wall i
(area A_i)

$V_i = \text{Total seismic force at a floor level}$
Seismic Force Distribution

\[V_i = V \cdot \frac{F_i A_i}{\sum_{i=1}^{N} F_i A_i} \]

\[F = 1 \]
if \(H/L \leq 1.33 \)

OR

\[F = (1.33 \frac{L}{h})^2 \]
if \(H/L > 1.33 \)

This is based on the Mexican Code NTC-M 2004
Mechanism of Seismic Response in a Confined Masonry Building

Masonry walls

Critical region

Diagonal cracking

Source: M. Astroza lecture notes, 2010
Mechanism of Seismic Response in a Confined Masonry Building

Onset of Diagonal cracking

Damage in critical regions

Masonry walls
Seismic Design Objectives

➢ RC confining elements must be designed to prevent crack propagation from masonry walls into critical regions of confining elements.

➢ This can be achieved if critical regions of the RC tie-columns are designed to resist the loads corresponding to the onset of diagonal cracking in masonry walls.
This seismic performance should be avoided!
Seismic Design of Confined Masonry Components = Wall + RC Confining Elements

Wall + RC confining elements = Wall = shear due to V + Confining elements = tension/compression due to M
Seismic Design of Walls for Shear

Use CSA S304.1
Cl.10.10.1.1

$V_r = V_m$

Consider masonry shear resistance only

Diagonal crack is caused by shear stresses (same as beams)!

See page 2-11 of Seismic Masonry Guide (Anderson and Brzev)
Design Walls for Shear

2.3.2.1 Flexural shear walls

Flexural shear walls are characterized by height/length aspect ratio of 1.0 or higher (see Figure 2-6a). Consider a reinforced masonry shear wall built in running bond which is subjected to the effect of factored shear force, \(V_f \), and the factored bending moment, \(M_f \).

Factored in-plane shear resistance, \(V_r \), is determined as the sum of contributions from masonry, \(V_m \), and steel, \(V_s \), that is,

\[
V_r = V_m + V_s \quad (1)
\]

Masonry shear resistance, \(V_m \), is equal to:

\[
V_m = \phi_m (v_m b_w d_v + 0.25 P_d) \gamma_g \quad (2)
\]

Wall dimensions \((b_w \text{ and } d_v)\):
- \(b_w = t\) overall wall thickness (mm) (referred to as "web width" in CSA S304.1); note that \(b_w \) does not include flanges in the intersection walls
- \(d_v\) = effective wall depth (mm)
- \(d_v \geq 0.8b_w\) for walls with flexural reinforcement distributed along the length

Wall cross-sectional dimensions \((b_w \text{ and } d_v)\) used for shear design calculations are illustrated in Figure 2-10.
In-plane shear failure: hollow clay block masonry
In-plane shear failure of masonry walls at the base level - hollow clay blocks (Cauquenes)
In-plane shear failure of masonry walls at the base level (cont’d)
Design of RC Confining Elements

Find T and C forces due to M and design according to CSA A23.3 concrete code (same as RC columns)

$$M_r = 0.9 A_s \phi_s F_y d_1$$

As = total steel area in a tie-column

A_s = total steel area in a tie
Tie-Column Failure
Buckling of a RC Tie-Column due to the Toe Crushing of the Masonry Wall Panel
How to prevent buckling and failure of RC tie-columns?

➢ All surveyed buildings in Chile had uniform tie spacing 200 mm
➢ Tie size 6 mm typical, in some cases 4.2 mm (when prefabricated cages were used)

Closer tie spacing at the ends of tie-columns (200 mm regular and 100 mm at ends)
How to prevent buckling failure of RC tie-columns?

- Tie spacing \((s)\) should not exceed 200 mm - this applies to RC tie-columns and tie-beams
 - For regions of high and very high seismicity, reduced tie spacing \((s/2)\) is required at the ends of tie-columns, as shown in Figure 45 b. The length over which the reduced tie spacing is used should not exceed the larger of the following two values:
 - \(2b\), where \(b\) is the tie-column dimension, or
 - \(h_o/6\), where \(h_o\) is the tie-column clear height.
 - For regions of moderate and low seismicity, an uniform tie spacing \((s)\) of 200 mm should be used throughout - it is not required to reduce tie-spacing at the tie-column ends.

Source: Confined Masonry Guide, Jan 2011 draft
Shear Failure of RC Tie-Columns
How to Prevent Shear Failure?

Column shear capacity should be checked. Shear failure is generally associated with inadequate transverse (shear/confinement) reinforcement.

\[V_p \geq V_r / 2 \]

\[V_r = \text{wall shear resistance} \]

Same approach like RC frames with infills!

Source: M. Astroza lecture notes, 2010
Confined Masonry: Construction Details

Good connections are of critical importance!

SOLUTION: Sufficient Anchoring
Inadequate Anchorage of Tie-Beam Reinforcement
Inadequate Anchorage of Tie-Beam Reinforcement
(another example)
Tie-column Vertical Reinf and Tie-Beam Longitudinal Reinforcement

Figure 42. Tie-beam construction: a) reinforcement is a must! (Brzev, 2008).

Figure 43. Tie-beam reinforcement details: a) confinement reinforcement must be added when prefabricated.
SEISMIC DESIGN GUIDE
FOR LOW-RISE CONFINED MASONRY BUILDINGS

Prepared by
Roberto Melli, Mexico (Co-Chair)
Svetlana Bizev, Canada (Co-Chair)
Maximiliano Astroza, Chile
Teddy Boen, Indonesia
Francisco Crisafulli, Argentina
Junwu Dai, China
Mohammed Parsi, Algeria
Tim Hart, USA
Ahmed Mebarki, France
A.S. Moghadam, Iran
Daniel Quin, Peru

Draft guide available online at
www.confinedmasonry.org